Using Fibonacci Numbers as an
Introduction to Proof

By Kyle T Schultz
University of Georgia

Introduction

The class began innocently enough with the first ten

terms of the Fibonacci sequence written on the board:
1,1,2,3,5,8, 13, 21, 34, 55
This sequence, named after a twelfth-century Italian
mathematician, has first and second terms of 1 and each
successive term. 1s the sum of the previous two. I
casually mentioned to my class that I could instantly
find the sum of these terms, 143. My students weren't
impressed. I asked them, "What if I let you choose the
values for the first two terms and generate the rest using
the same method?” With their interest piqued, they
chose 2 and 5, generating the sequence:
2, 5,7, 12, 19, 31, 50, 81, 131, 212

I recorded these terms on the board, as dictated by my
students, and quickly announced the sum was 550 A
few eyebrows were raised, but most were skeptical.
"You were adding them up as you wiote them on the
board," accused one student

Several sequences (and correct sums) later, my
students banished me to the hallway, so that I was not
allowed to watch them generate their new sequence and
record it on the board As I left the room, they
promised the upcoming sequence would be the most
difficult yet. Finally, the door opened, 1 stepped into
the room, and was greeted by:

4,13,9, 22, 31, 54, 85, 139, 224, 363,
Without hesitation, T calmly replied, "935" and an
outburst of confusion, delight, and consternation ensued
Several students marveled at my supreme computational
powers. Others tried to come up with more difficult
sequences in an attempt to foil me A few sat quietly,
studying the board, looking for the trick they knew T had
to be using. They were hooked. I now had a captive
audience of high school freshmen and was ready to
embark upon an excursion into patterns, mental
computation, and the meaning of proof.

Students and Proof
The classroom discussion described above is the

beginning of a lesson designed to introduce students to
mathematical proof, an important concept in school
mathematics. While many curricula regulate it to
geometry classrooms, the National Council of Teachers
of Mathematics (2000) believes that proof "should be a
consistent part of students’ mathematical experience in
pre-kindergarten through grade 12" (p. 56) In order to
make this vision a reality, teachers must find
opportunities for their students to reason and use proof
in mathematical contexts other than geometry.

Too often, I have found that high school students
write proofs, whether in geometry or precalculus, and
do not have the conceptual foundation to justify their
actions. Summaries of research (McCrone & Martin,
2004; O'Daffer & Thornquist, 1993), support this
belief, suggesting that students have difficulty
discerning between examples and proof, determining
when proof Is necessary, and believing thar deductive
proofs ate more than merely partial evidence that a
conjectuze is true. The purpose of the lesson described
here is to introduce and address these difficulties.

Finding the Pattern

As any reputable magician will not reveal the
secrets behind a trick or illusion, I did not reveal the
key to my seemingly astounding computational
powers, Instead, I gave them time to examine the data
(see Table 1). Working alone or in small groups, they
produced several conjectures regarding the terms of the
sequence, methods for adding them quickly, and their
relationship to the sum. In their discussion, a conjecture
was abandoned if it didn't work (usually when a
counterexample was discovered) or if the method used
became too complicated or time-consuming

Table 1
Examples of Ten-Term Fibonacci Sequences Used in Class
Ten Terms of a Fibonacclh-Generated Seguence Bum
1 2 3 5 i i3 Z1 34 85 i43
2 5 FIo1z2| 1wl 31l sof Bi! 13t} 212 550
S 1%) 22 35] 57 92| 1a%| 241| 399 1012
-5 -3 -B| -I11] -1%| -30| -48| -7o|-128|-207 -539
-8 4] -4 o| -a| -a| -g} -12{ -2p] -32 -B8
-4 13 E) 22 31 53] 84| 137| 221| 388 523

One student, who was looking at relationships
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between individual terms and the sum, directed the

class to 50, the seventh term of one of the sequences and
the sum of that sequence, 550. From these numbers, the
class produced the following conjecture: The sum of
the first ten terms of any generalized Fibonacci
sequence equals its seventh term multiplied by 11. After
testing each of the sequences on the board (and a few of
their own), my students are convinced that this
relationship must be true.

Discussion

Before contemplating the wvalidity of their
conjecture, I feel it is important to ask my students how
I could multiply larger numbers by eleven quickly and
accurately This question prompts a brief review of the
multiplication algorithm and place value, as well as a
discussion of the power of some mental computation
strategies. After several examples that afford them the
chance to practice multiplying by eleven mentally, the
discussion moves towards prool.

To initiate the discussion of proof, I ask, "Is this
relationship always true?" Next, and more importantly,
I ask every mathematics teacher's favorite question,
"Why?" While the answer to the first of these
seemingly simple questions is invariably agreed upon as
"ves," the second invariably sparks some debate.

More likely than not, at least one student will offer
the justification, "It works for every example that we've
tried." I reply to responses of this type by asking
questions such as, "Can you be sure the relationship is
true for every possibility?" and, if so, "How many
different examples must be verified before you can say,
without any doubt, that the relationship is always true?
(Is there an official amount?)" In trying to formulate a
teply to these questions, my students often become
frustrated, as they have become cognizant of the
difference between saying that something is always true
and being able to show why. This gap between thought
and articulation addresses another of my important
questions: "Why do we need to prove that the
conjecture is true?”

Though students struggle in coming to terms with
questions like these, it is in that struggle that they begin
to understand why proof is important in mathematics.
As teachess, by facilitating these discussions, we are
performing an invaluable service. We are giving our

n

students a foundation for systematic reasoning, "a

defining feature of mathematics” (NCTM, 2000, p. 57)

A Proot

To formulate a proof for the class' conjecture, I
suggested that they might ty an algebraic argument
Since using specific values will not justify all cases of
this relationship, I asked if there is 2 way to express
"any number vou choose,” prompting students to
consider variables. As a class, we chose a2 and b to
represent the first two terms of the sequence. My
students then expressed the rest of the terms of the
sequence in terms of a and b (see Figure 1), formulated
a value for the sum of the ten terms, formulated a value
for eleven times the seventh term, and showed these
values were equivalent (see Figure 2).
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Figure 1. A student's algebraic representation of
the first ten terms.
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Figure 2. A student's conclusion of the argument.
Once my students completed their work, I asked,
"Does this argument prove that this relationship will
always be true?" and, most importantly, "Why?" This
line of questioning can help in assessing whether or not
students believé that a proof is sulficient as a
mathematical argument, rather than just more evidence
to add support a conjecture. With the conclusion of this
discussion, the lesson ended
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Conclusion

Activities of this nature can be structured around
mathematical relationships throughout the high school
curriculum, not just geometry. Atrticles by Eric Knuth
(2002), Elizabeth Bremigan (2004) and Robert Stanton
(2005) in Mathematics Teacher provide additional
rationale and examples for non-geometric use of proof
By making proof more pervasive in the high school
curriculum, we give our students a better opportunity

to understand both the content and discipline of

mathematics.
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